跟锦数学

 找回密码
 立即注册
欢迎关注跟锦数学微信公众账号, 第1200题以后的都在上面更新. 你可以微信添加 zhangzujin361 为好友, 邀请你加入跟锦数学微信群, 与诸多数学爱好者交流. 你可以直接按照提示通过支付宝充值角, 也可以微信/支付宝给我转账, 我给你的账号充值. 每次至少10元=100角. 公告1: 家里蹲大学数学杂志 (含更正后的裴礼文全部解答, 谢惠民第1-12章解答) 点击查看详情! 公告2: 邮箱: zhangzujin361@163.com; 微信: zhangzujin361; 微信公众账号: 跟锦数学. 欢迎关注. 帖子全部弄成积分交易, 让大家更省心. 也花了我一天的时间... 公告3: [赣南师范大学考研试题解答免费查看]看到想知道解答的, 点击帖子右上方的``购买主题'', 角不足时点击充值, 输入 A 角, 则需要用支付宝支付 0.A 元, 点击充值, 扫码后按照要求转账 0.A 元到张祖锦的账户, 记得输入付款说明 (备注). 这样软件才能识别出是你充值的``角'', 返回后即可看到你的``角''已经增加了 A. 如果没有返回, 也没关系, 等我电脑处理后就可以了. 毕竟我也是个人, 要工作, 要生活. 有空还是会把电脑挂着的. 一旦有了``角'', 就可以直接购买主题了. 手机用户购买后可能要重新进去, 数学公式才能从乱码刷新成漂亮的公式. 您也可以一次性购买多个 ``角'' (比如 20 ``角''), 步骤同上. 那样就不用每次看一个主题都要去支付宝处理了. 节省时间.
收藏本版 |订阅

其他课程 今日: 0|主题: 178|排名: 15 

作者 回复/查看 最后发表
[科研] (170109) Zhou, Yong. Weighted regularity criteria for the three-dimensional Navier-Stokes equations. Proc. Roy. Soc. Edinburgh Sect. A 139 (2009), no. 3, 661--671. zhangzujin 2017-7-6 051 匿名 2019-3-11 08:58
[科研] (161227) 设 $f\in L^1(\bbR)$, $f(x)>0$, 定义 $$\bex \hat f(t)=\int_{\bbR} e^{-\i xt}f(x)\rd x. \eex$$ 证明: 对每个 $t\neq 0$, 有 $|\hat f(t)|<\hat f(0)$. - [售价 9 角] zhangzujin 2017-7-6 095 匿名 2019-3-11 08:58
[科研] (161224) [Evans PDE P 309] Use the Fourier transform to prove that if $u\in H^s(\bbR^n)$ for $s>n/2$, then $u\in L^\infty(\bbR^n)$, with the bound $$\bex \sen{u}_{L^\infty(\bbR^n)}\leq C\sen{u}_{H^... - [售价 8 角] zhangzujin 2017-7-6 078 匿名 2019-3-11 08:58
[科研] (161223) [Evans PDE P 307] Integrate by parts to prove $$\bex \sen{Du}_{L^p}\leq C\sen{u}_{L^p}^\f{1}{2}\sen{D^2u}_{L^2}^\f{1}{2} \eex$$ for $2\leq p<\infty$ and all $u\in C^\infty_c(U)$. - [售价 9 角] zhangzujin 2017-7-6 077 匿名 2019-3-11 08:58
[科研] (161222) Let $\lm_1,\nu,\al$ be positive and $\be>3$. If $$\bex \lm_1\nu^2[\nu \al(\be-1)]^\f{2}{\be-3}>\f{\be-3}{\be-1}, \eex$$ then there exists a positive $\del$ such that ... zhangzujin 2017-7-6 064 匿名 2019-3-11 08:58
[科研] (161211) Let $\dps{\frac{3}{2}<q<3}$, and $f, g\in C_c^1(\bbR^3)$, we have $$\bex \int_{\bbR^3} |f|^2|g|^2\rd x_1\rd x_2\rd x_3 \leq C\sen{\n f}_{L^q}^2 \sen{g}_{L^2}^\frac{2(2q-3)}{q} \sen{\n_hg}_... zhangzujin 2017-7-6 069 匿名 2019-3-11 08:58
[科研] (161209) Suppose that $f\in W^{1,p}(\bbR^3)$ and $g\in W^{1,q}(\bbR^3)$ with $1<p,q<\infty,\ 1/p+1/q=1$. Then $\n(fg)$ is in $\calH^1(\bbR^3)$. .. zhangzujin 2017-7-6 092 匿名 2019-3-11 08:58
[科研] (161208) [Hardy type inequality] If $1<p<+\infty$, $r\neq 1$, $f\geq 0$, and $$\bex F(x)=\sedd{\ba{ll} \dps{\int_0^x f(t)\rd t,}&r>1,\\ \dps{\int_x^\infty f(t)\rd t,}&r<1, \ea} \eex$$ then ... zhangzujin 2017-7-6 086 匿名 2019-3-11 08:58
[科研] (161207) For $f\in \dot B^r_{\infty,\infty}(\bbR^3)$, $g,h\in H^1(\bbR^3)$ and any $\ve>0$, $0<r<1$, $k\in\sed{1,2,3}$, we have zhangzujin 2017-7-6 084 匿名 2019-3-11 08:58
[科研] (161206) 对 $\forall\ x,y\in\bbR^n,\ \be\geq 1$, 试证: $$\bex (|x|^{\be-1}x-|y|^{\be-1}y)\cdot (x-y)\geq \f{1}{2}\sex{|x|^{\be-1}+|y|^{\be-1}}|x-y|^2, \eex$$ 且 $\dps{\f{1}{2}}$ 不能再改进. - [售价 3 角] zhangzujin 2017-7-6 083 匿名 2019-3-11 08:58
[科研] (161022) $$\bee \sen{\n f}_{L^4(\bbR^2)} \lesssim \sen{\vLm^\al f}_{L^2} ^\frac{2\al+1}{4} \sen{\vLm^\al \n^2f}_{L^2} ^\frac{3-2\al}{4}, \eee$$ zhangzujin 2017-7-5 085 匿名 2019-3-11 08:58
[科研] (161011) 这段时间一直在看 [Gallay Thierry, Vladimir Sverak, Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations zhangzujin 2017-7-5 083 匿名 2019-3-11 08:58
[科研] (161009) A strong solution (by which we mean $\bbu\in L^\infty(0,T;H^1(\bbR^3))\cap L^2(0,T;H^2(\bbR^3))$) is in fact smooth. zhangzujin 2017-7-5 069 匿名 2019-3-11 08:58
[近世代数] (161005) 设 $M$ 为自然数集, 试给出 $M$ 的两个双射变换 $\sigma,\tau$ 使得 $\sigma \tau\neq \tau\sigma$. - [售价 3 角] zhangzujin 2017-7-5 0114 匿名 2019-3-11 08:58
[复变函数] (160929) 设 $f$ 在 $D=\sed{z\in\bbC;\ |z|\leq 1}$ 上除点 $z_0\in D$ 外处处解析, 且满足 (1) 在 $D$ 内 $f$ 没有零点; (2) $z\in \p D\ra f(z)\in \p D$; (3) $z_0$ 是 $f$ 的一阶极点. 试证: ... - [售价 5 角] zhangzujin 2017-7-3 0102 匿名 2019-3-11 08:58
[实变函数] (160912) 平面上的两个互不相交的闭集的距离一定大于零么? - [售价 2 角] zhangzujin 2017-7-3 0116 匿名 2019-3-11 08:58
[点集拓扑] (160911) 试举一个拓扑空间 $X$, 其有一子集 $Y$, 是有界闭的, 但不是紧致的. zhangzujin 2017-7-3 076 匿名 2019-3-11 08:58
[点集拓扑] (160910) 试举一个不满足 $A_1$ 公理 ($A_2$ 公理) 的拓扑空间. zhangzujin 2017-7-3 0114 匿名 2019-3-11 08:58
下一页 »

快速发帖

还可输入 255 个字符
您需要登录后才可以发帖 登录 | 立即注册

本版积分规则

Archiver|手机版|小黑屋|跟锦数学  

GMT+8, 2019-7-21 07:52 , Processed in 0.083920 second(s), 6 queries , File On.

Powered by Discuz! X3.3

© 2001-2017 Comsenz Inc.

返回顶部 返回版块