跟锦数学

 找回密码
 立即注册
公告1: 家里蹲大学数学杂志 (含更正后的裴礼文全部解答, 谢惠民第1-9章解答) 点击查看详情! 公告2: 邮箱: zhangzujin361@163.com; 微信: zhangzujin361; 微信公众账号: 跟锦数学. 欢迎关注. 帖子全部弄成积分交易, 让大家更省心. 也花了我一天的时间... 公告3: [赣南师范大学考研试题解答免费查看]看到想知道解答的, 点击帖子右上方的``购买主题'', 角不足时点击充值, 输入 A 角, 则需要用支付宝支付 0.A 元, 点击充值, 扫码后按照要求转账 0.A 元到张祖锦的账户, 记得输入付款说明 (备注). 这样软件才能识别出是你充值的``角'', 返回后即可看到你的``角''已经增加了 A. 如果没有返回, 也没关系, 等我电脑处理后就可以了. 毕竟我也是个人, 要工作, 要生活. 有空还是会把电脑挂着的. 一旦有了``角'', 就可以直接购买主题了. 手机用户购买后可能要重新进去, 数学公式才能从乱码刷新成漂亮的公式. 您也可以一次性购买多个 ``角'' (比如 20 ``角''), 步骤同上. 那样就不用每次看一个主题都要去支付宝处理了. 节省时间.
收藏本版 |订阅

其他课程 今日: 0|主题: 178|排名: 15 

作者 回复/查看 最后发表
[文学/生活] (170630) 梁济自杀前问儿子梁漱溟:这个世界会好吗? zhangzujin 2017-7-8 0321 匿名 2019-3-11 08:58
[解析几何] (170620) 已知二次型 $$\bex f(x,y,z)=x^2+3y^2+z^2+2bxy+2xz+2yz \eex$$ 的秩是 $2$, 求参数 $b$, 并指出方程 $$\bex f(x,y,z)=4 \eex$$ 表示什么曲面? - [售价 5 角] zhangzujin 2017-7-8 091 匿名 2019-3-11 08:58
[泛函分析] (170619) 设 $H^{-1}$ 是 $H^1_0$ 的对偶空间, 定义域为 $[0,1]$. 试证: (1) $\sed{h\sin (2\pi hx);\ h>0}$ 在 $H^{-1}$ 中有界; (2) 试求 $h\sin (2\pi hx)$ 在 $H^{-1}$ 中的弱极限. - [售价 3 角] zhangzujin 2017-7-8 0126 匿名 2019-3-11 08:58
[科研] (170605) Let $$\beex \bea \lm,\mu\in\bbR,\quad 1\leq p,q\leq r\leq \infty,\quad 0<\tt<1,\\ -\lm+\frac{n}{p}<\frac{n}{r}<-\mu+\frac{n}{q},\\ \frac{n}{r}=(1-\tt)\sex{-\lm+\frac{n}{p}} +\tt\sex{-\mu+\... zhangzujin 2017-7-8 0104 匿名 2019-3-11 08:58
[实变函数] (170604) 设 $f\in L(\bbR)$, 试证: $$\bex \vsm{n}f(n^2x) \eex$$ 在 $\bbR$ 上几乎处处收敛到一 Lebesgue 函数. - [售价 5 角] zhangzujin 2017-7-8 0111 匿名 2019-3-11 08:58
[科研] 70603) $$\bex \dot B^0_{\infty,2}\subsetneq BMO. \eex$$ zhangzujin 2017-7-8 073 匿名 2019-3-11 08:58
[科研] (170602) $$\bex \n\cdot\bbb=0\ra \n\times [(\n\times \bbb)\times \bbb]=\n\times [\n\cdot (\bbb\otimes \bbb)]. \eex$$ zhangzujin 2017-7-8 0133 匿名 2019-3-11 08:58
[科研] (170601) $$\bex 0<p<\infty\ra H_p=\dot F^0_{p,2};\quad BMO=\dot F^0_{\infty,2}. \eex$$ see [H. Triebel, Theory of function spaces I, Birkh\"auser, Basel, 1983] Page 244 zhangzujin 2017-7-8 092 匿名 2019-3-11 08:58
[科研] (170531) $$\bex \n\times(\bba\times\bbb)=(\bbb\cdot\n)\bba -(\bba\cdot\n)\bbb+\bba(\n\cdot\bbb)-\bbb(\n\cdot\bba). \eex$$ zhangzujin 2017-7-8 066 匿名 2019-3-11 08:58
[点集拓扑] (170528) 在实数空间 $\bbR$ 中给定如下等价关系: $$\bex x\sim y\lra x,y\in (-\infty,1)\mbox{ 或者 } x,y\in [1,2)\mbox{ 或者 }x,y\in [2,+\infty). \eex$$ 设在这个等价关系下得到的商集 $Y=\sed{[-2],[1],[... zhangzujin 2017-7-8 0118 匿名 2019-3-11 08:58
[泛函分析] (170516) 在 [Yosida, Kōsaku. Functional analysis. Reprint of the sixth (1980) edition. Classics in Mathematics. Springer-Verlag, Berlin, 1995] 第 126-127 页给出了一致凸 Banach 空间的定义: ... zhangzujin 2017-7-8 068 匿名 2019-3-11 08:58
[科研] (170509) $$\bex (\n\times\bbb)\times\bbb=-\n\frac{|\bbb|^2}{2}+(\bbb\cdot\n)\bbb. \eex$$ zhangzujin 2017-7-8 066 匿名 2019-3-11 08:58
[科研] (170508) For $f\in H^s(\bbR^3)$ with $s>\frac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{f}_{\dot B^0_{\infty,\infty}}}\ln \sex{1+\sen{f}_{H^s}},\quad s>\frac{3}{2}. \eex$$ zhangzujin 2017-7-8 079 匿名 2019-3-11 08:58
[科研] (170507) Assume that $a$ is a positive constant, $x(t),y(t)$ are two nonnegative $C^1(\bbR^+)$ functions, and $D(t)$ is a nonnegative function, satisfying $$\bex \frac{\rd}{\rd t} (x^2+y^2)+D \leq ... zhangzujin 2017-7-8 076 匿名 2019-3-11 08:58
[科研] (170506) $$\bex \sum_{|\al|\leq m}\sen{D^\al (fg)-(D^\al f)g}_{L^2} \leq C\sex{\sen{f}_{L^\infty}\sen{g}_{H^m}+\sen{f}_{H^{m-1}}\sen{\n g}_{L^\infty}}. \eex$$ zhangzujin 2017-7-8 062 匿名 2019-3-11 08:58
[科研] (170425) For $2<q<\infty$, $$\beex \bea -\int \lap \bbu \cdot |\bbu|^{q-2}\bbu ... \eea \eeex$$ zhangzujin 2017-7-8 070 匿名 2019-3-11 08:58
[科研] (170421) $$\beex \bea \int \lap f|f|^{q-2}f\rd x &=...\eea \eeex$$ zhangzujin 2017-7-8 055 匿名 2019-3-11 08:58
[科研] (170416) 如果 $$\bex \sen{\n^2 u_n}_{L^\infty(0,T;L^2(\Om))}\leq C, \eex$$ 则 $$\bex \sen{\n^2 u_n}_{L^2(\Om\times (0,T))}\leq C, \eex$$ 而有子列弱收敛 $$\bex \n^2u_{n_k}\rightharpoonup \n^2u,\mbox... zhangzujin 2017-7-8 094 匿名 2019-3-11 08:58
[点集拓扑] (170415) [熊金城点集拓扑习题7-2-01] 设 $X$ 是一个 Hausdorff 空间, $\scrA$ 是它的一个非空集族, 且由 $X$ 的紧致子集构成. 证明: $\dps{\bigcap_{A\in\scrA}A}$ 是 $X$ 的一个紧致子集. zhangzujin 2017-7-8 087 匿名 2019-3-11 08:58
[点集拓扑] (170414) [熊金城点集拓扑习题7-1-10] 设 $U$ 是拓扑空间 $X$ 中的一个开集. 证明: 如果 $X$ 中的一个由紧致闭集构成的集族 $\scrB$ 满足条件 $\bigcap_{B\in \scrB}B\subset U$, 则存在 $\scrB$ 的一个有限子族 ... zhangzujin 2017-7-8 055 匿名 2019-3-11 08:58
下一页 »

快速发帖

还可输入 255 个字符
您需要登录后才可以发帖 登录 | 立即注册

本版积分规则

QQ|Archiver|手机版|小黑屋|跟锦数学  

GMT+8, 2019-4-26 19:50 , Processed in 0.081326 second(s), 8 queries , File On.

Powered by Discuz! X3.3

© 2001-2017 Comsenz Inc.

返回顶部 返回版块